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Abstract

In this paper, the Fourier-series approach is employed to study wheel–rail interactions generated by a single, or multiple

wheels moving at a constant speed along a railway track. This approach has been previously explored by other researchers

and what is presented here is an improved version. In this approach, the track is represented by an infinitely long periodic

structure with the period equal to the sleeper spacing and the vertical irregular profile (roughness) of the railhead is

assumed to be periodic in the track direction with the period equal to the length of a number (integer), N, of sleeper bays.

By assuming linear dynamics for the wheel/track system and for steady state, each wheel/rail force is a periodic function of

time and can be expressed as a Fourier series. Fourier coefficients are then shown to be determined by solving, separately,

N sets of linear algebraic equations. The coefficient matrix of each set of equations is independent of rail roughness and

therefore this approach is particularly useful in modelling the generation and growth of rail roughness of short

wavelengths. Excitation purely from the axle loads moving over the periodic track structure is realised by assuming a

smooth railhead surface, and subsequently roughness equivalent to such an excitation is defined and evaluated. This

equivalent roughness may, in addition to the actual rail roughness, be input into models in which the effect of moving axle

loads has been excluded, so that the predictions from those models can be improved. Results are produced using the

improved Fourier-series approach to investigate the effects of wheel speeds, roughness wavelengths and interactions

between multiple wheels on wheel/rail contact forces.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Wheel–rail interactions play a key role in the generation of wheel/rail noise, the growth of rail roughness
and the formation of rail corrugation. These issues are of high frequencies up to several thousands Hertz.
Since frequencies are much higher than the natural frequencies of the primary suspensions, only the unsprung
masses of a train need to be considered each with an axle load applied on the mass centre. The most
comprehensive and widely employed wheel/rail noise generation models are those developed by Remington
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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[1,2] and Thompson [3,4]. A large number of papers have been published to model short-pitch rail corrugation
by e.g. Müller [5], see also [6], following studies by Valdivia [7], Hempelmann [8] and Frederick [9]. While they
all consider in the frequency domain only a single wheel interacting with a rough rail, Igeland [10], using a
time-domain model, demonstrates the importance of including multiple wheels in the analysis. Dealing with
high-frequency problems normally requires analysis to be performed in the frequency domain. Thus, the
motion of the wheels is replaced by the motion of a roughness strip in all the aforementioned frequency-
domain models, resulting in a linear, time-invariant system. In the real situation, the wheels are travelling
along the track and the roughness is stationary. Not only the irregular profile of the railhead produces
dynamic wheel–rail forces, the axle loads moving along the periodic track structure also contributes to
wheel–rail dynamic interactions. In other words, due to the varying dynamic stiffness of the rail on discrete
supports, vibration is still generated in the wheel/track system even wheels move over a perfectly smooth rail.
Such a vibration generation mechanism may be termed the moving axle load excitation, in contrast to the

roughness excitation. The wheel moving speed has effects on both of these two excitations. Since wheels are
forced to be stationary in the track direction, the ‘moving-roughness approach’ is able to consider the
roughness excitation without including the effect of the wheel speed, but totally excludes the moving axle load
excitation. Furthermore, for some roughness wavelengths this approach changes the vibration propagation
characteristics of the rail, i.e. it replaces a propagating vibration mode with a non-propagating one, or
vice versa [11].

Consideration of wheels moving along a discretely supported rail is normally achieved in the time domain
e.g. [10,12] by solving differential equations as an initial-value problem. Time-domain approaches require the
track to be truncated into a finite length. To minimise wave reflections from the truncations and to be able to
account for high-frequency vibration, the track section must include at least 100 sleepers and the rail must be
modelled using either the finite element method [10] or the modal superposition method [12] employing more
than 100 modes. If multiple wheels are present covering a rather long distance, the track section must be much
longer and in turn much more elements or modes need to be employed for the rail. This would generate a large
number of differential equations of time-varying coefficients. It is time consuming to solve these equations,
due not only to the large number of equations, but also to the very small time-steps required for high-
frequency vibration. For periodic excitations, extra time is also required for achieving the steady-state
solution. However, time-domain approaches do have advantages over frequency-domain ones on some
aspects, for example the former are able to deal with nonlinearity (e.g. in the wheel/rail contact) and allow
more complex configurations (e.g. suspended sleepers).

To overcome shortcomings of the moving roughness approach so that the moving axle load excitation can
be included, some researchers suggest a quasi-static approach [13,14] (in these two references, the moving axle
load excitation is termed alternatively the parametric excitation). According to this approach, the track
provides a varying dynamic stiffness as a load moves. In the calculation of the varying stiffness of the track,
x ¼ ct (where c is the speed of the moving load) is set into the receptance, ap(x,o), of the rail at the loading
point, x, due to a unit stationary harmonic load of frequency o, and then the receptance is inversed to give the
time-dependent dynamic stiffness of the track. Based on this time-dependent dynamic stiffness, a time-domain
model can be set up. However, it is shown in Ref. [15] that, the ratio of the displacement of the rail at the
loading point to a moving harmonic load is significantly different from ap(ct,o) when o is close to the
pinned–pinned frequency of the track. It is also the fact that, like the moving roughness approach, the quasi-
static approach may also replace a propagating vibration mode, which is excited by the moving wheels with a
non-propagating one, or do the opposite. This will introduce great errors to wheel–wheel interactions which
are provided by the rail. It should be acknowledged that the Green function method presented in Ref. [13] may
be a good alternative although its usefulness to deal with multiple wheels is to be investigated.

When the track is modelled as an infinite long, linear and periodic structure and the roughness satisfies
certain conditions, steady-state wheel/rail forces and the displacements of the wheel/rail contact points are
periodic functions of time. They can be expressed using the Fourier series and linear algebraic equations may
be set up to evaluate the Fourier coefficients. Such an approach may be termed the Fourier-series approach.
This is a frequency-domain ‘moving wheel approach’ and it is obvious that this approach is highly
computationally efficient. Implementation of such an approach was initially done by the present authors for a
special case in which the rail roughness is periodic with the period equal to the sleeper spacing [16]. That work
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formed a part of a project dealing with the initiation and growth of rail roughness of short wavelengths
(30–100mm), in which wheel/rail interactions must be calculated for a great number of times each with a
renewed rail profile [17]. Although the amplitude of rail roughness considered is small (therefore a linear
wheel/track model can be assumed), it is important for rolling noise generation [1–4]. It should be
acknowledged that the Fourier-series approach had been previously explored and employed in a train–track
interaction model, as described in Ref. [18]. This approach was also used in Ref. [19] in which vibrations
caused by an unbalanced wheel moving along a smooth rail (i.e. no rail roughness) are investigated and in Ref.
[20] in which interactions are addressed between an infinite wheel–train (wheels are identical and equally
spaced) and a smooth rail track.

In this paper, the Fourier-series approach is adopted and improved to study wheel–rail interactions
generated by a single, or multiple wheels moving at a constant speed along a railway track. In this improved
version, the vertical irregular profile (roughness) of the railhead is assumed to be periodic in the track direction
with the period equal to the length of a number (integer), N, of sleeper bays. A solution is sought in which all
the wheel/rail forces and displacements of the wheel/rail contact points are periodic functions of time with the
period equal to N time the sleeper passing time. With a special mathematical treatment, the Fourier
coefficients of the wheel/rail forces are shown to be determined by solving, separately, N sets of linear
algebraic equations. This improvement not only overcomes the problem described in the second paragraph of
Section 4 of Ref. [18], but also makes the Fourier-series approach even more efficient. Detailed derivations are
presented in Section 2. Conditions are also given in Section 2.7 under which the period solution exists and is
unique. Section 3 describes roughness equivalent to the moving axle load excitation. Results produced using
this approach are presented in Section 4; firstly, for a single locomotive wheel and then for four such wheels
running over a conventional ballasted track at different speeds and excitation frequencies including the case of
purely moving axle load excitation. From these results, conclusions are drawn and summarised in Section 5.

This paper is concerned with the determination of the periodic solution only. From time-domain
calculations, it can be generally assumed that this periodic solution is asymptotically stable. Nevertheless,
instability can happen in some situations, see e.g. [21].

2. The Fourier-series approach to wheel–rail interaction forces

2.1. Track model and governing equations

The wheel/track model is shown in Fig. 1. The rail is modelled as a Timoshenko beam resting on an infinite
number of equally spaced supports. The sleeper spacing is denoted by L. Each of the supports consists of a rail
pad, which is modelled as a spring with stiffness kP, and a sleeper which is modelled as a rigid mass mS resting
on a spring of stiffness kB representing the ballast. From left to right, the supports are numbered as
�N,y,�1, 0, 1,y,N. The jth support is located at x ¼ jL. There are a number, M, of wheels moving
uniformly at speed c along the track in the positive x-direction. At t ¼ 0, the x-coordinates of the wheels (from
the 1st to the last) are a1, a2,y, aM. Bogie frames and car bodies are excluded from the model since
frequencies concerned are much higher than the resonance frequencies of the primary suspensions. However,
the wheels are coupled through the rail. If the vertical displacement of the rail is denoted by wR(x, t) (directed
Fig. 1. Wheel/track interaction model.
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downwards) and the rotation angle of the cross-section due to the bending moment only is denoted by cR(x, t),
then the governing equations for the rail are

rA
q2wRðx; tÞ

qt2
� kAG

q2wRðx; tÞ

qx2
þ kAG

qcRðx; tÞ

qx

¼
XM
l¼1

PlðtÞdðx� al � ctÞ þ
X1

j¼�1

FjðtÞdðx� jLÞ, ð1aÞ

rI
q2cRðx; tÞ

qt2
� EI

q2cRðx; tÞ

qx2
� kAG

@wRðx; tÞ

qx
þ kAGcRðx; tÞ ¼ 0. (1b)

In Eq. (1a), r denotes density, E, Young’s modulus, G, shear Young’s modulus, A the cross-sectional area of
the rail, I the second moment of the cross-section, k the shear coefficient of the cross-section, d( � ) Dirac-delta,
Pl(t) the lth wheel/rail force, and finally, Fj(t) the force applied by the jth support at the rail.

The wheels are modelled as rigid-body vibrating in the vertical direction. If the vertical displacement
(directed upwards) of the lth wheel is denoted by wl

W ðtÞ, then the governing equation is given by

ml
W €wl

W ðtÞ ¼ PlðtÞ �W l , (1c)

where ml
W is the mass of the wheel and Wl is half the axle load. Similarly, differential equations of motion can

be written for the supports. A contact spring is inserted between each wheel and the rail. It is assumed that the
wheels never loss contact with the rail. This requires that for l ¼ 1, 2,y,M,

wRðal þ ct; tÞ þ wl
W ðtÞ þ dl

0 þ ðPlðtÞ �W lÞ=kl
H ¼ zðal þ ctÞ, (2)

where dl
0 is the static deformation of the contact spring between the wheel and rail under the static load, Wl,

kl
H is the contact stiffness and z(x) describes the railhead roughness.
The roughness is assumed to be spatially periodic in the track direction with the period equal to the length

of a number, N, of sleeper bays, where NX1 is an integer. In other words, the profile, denoted by z(x), satisfies
zðxþNLÞ ¼ zðxÞ for any x. This assumption is practically reasonable; especially for short wavelength
roughness. With such a roughness, the track structure is still periodic in the x-direction but the period now
becomes NL. This allows the existence of a solution in which, wheel displacements, wheel/rail forces and the
displacements of the rail at the wheel/rail contact points are all periodic with the (minimum) period equal to
NL/c. In other words, have

wl
W ðtþNL=cÞ ¼ wl

W ðtÞ, (3a)

PlðtþNL=cÞ ¼ PlðtÞ (3b)

and for the rail and the supports, have

wRðxþNL; tþNL=cÞ ¼ wRðx; tÞ, (3c)

cRðxþNL; tþNL=cÞ ¼ cRðx; tÞ, (3d)

FjþN ðtþNL=cÞ ¼ FjðtÞ. (3e)

The main purpose of this paper is to find such a solution for the differential equations of the wheel/track
system, as detailed in Sections 2.2–2.6.

2.2. Irregular vertical railhead profile

Since the roughness, z(x), satisfies zðxþNLÞ ¼ zðxÞ for any x, it can be expressed as a sum of an infinite
number of spatial harmonics using Fourier series

zðxÞ ¼
X1

n¼�1

Zne
inðb0=NÞx, (4)
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where i ¼
ffiffiffiffiffiffiffi
�1
p

, b0 ¼ 2p=L, Zn is a complex number with Z0 ¼ 0. Owing to the filtering effect of the wheel–rail
contact patch [22], only roughness with wavelengths greater than about 0.02m is important (roughness
expressed in Eq. (4) is understood to be the filtered roughness). Therefore, the highest order of the harmonics
that should be considered is determined by

jnjp 2pN
0:02b0
¼ 30N (5)

for L ¼ 0.6m. In real calculation, n may be taken to be within the range of �50Npnp50N. Since z(x) must be
a real function of x, Z�n must be the conjugate of Zn. Now have,

zðxÞ ¼
X1

n¼�1

Zne
inðb0=NÞx

¼ � � � þ
X�ð2Nþ1Þ

n¼�ð3N�1Þ

þð�2NÞ þ
X�ðNþ1Þ

n¼�ð2N�1Þ

þð�NÞ þ
X�1

n¼�ðN�1Þ

þð0Þ

þ
XN�1
n¼1

þðNÞ þ
X2N�1

n¼Nþ1

þð2NÞ þ � � �

¼
X�1

k¼�1

ZkNe
ikb0x þ

Xðkþ1ÞN�1
n¼kNþ1

Zne
inðb0=NÞx

 !
þ
X1
k¼0

ZkNe
ikb0x þ

Xðkþ1ÞN�1
n¼kNþ1

Zne
inðb0=NÞx

 !

¼
X�1

k¼�1

ZkNe
ikb0x þ

XN�1
n0¼1

ZkNþn0e
iððkNþn0Þ=NÞb0x

 !
þ
X1
k¼0

ZkNe
ikb0x þ

XN�1
n0¼1

ZkNþn0e
iððkNþn0Þ=NÞb0x

 !

¼
X�1

k¼�1

ZkNe
ikb0x þ

XN�1
n0¼1

ZkNþn0e
ikb0x eiðn

0=NÞb0x

 !
þ
X1
k¼0

ZkNe
ikb0x þ

XN�1
n0¼1

ZkNþn0e
ikb0xeiðn

0=NÞb0x

 !

¼
XN�1
n0¼1

X�1
k¼�1

ZkNþn0e
ikb0x þ

X1
k¼0

ZkNþn0e
ikb0x

 !
eiðn

0=NÞb0x þ
X1

k¼�1

ZkNe
ikb0x

¼
XN�1
n0¼0

X1
k¼�1

ZkNþn0e
ikb0x

 !
eiðn

0=NÞb0x,

i.e.

zðxÞ ¼
XN�1
n¼0

X1
k¼�1

ZkNþne
ikb0x

 !
eiðn=NÞb0x ¼

XN�1
n¼0

X1
k¼�1

~Znk e
ikb0x

 !
eiðn=NÞb0x, (6)

where

~Znk ¼ ZkNþn; n ¼ 0; 1; . . . ;N � 1. (7)

According to Eqs. (5) and (7), for wheel–rail interaction evaluation, only terms satisfying |kN+n|p30N

need to be included in the inner series of Eq. (6). This gives �30�n/Npkp30�n/N, or �31pkp30. In actual
calculation, k may be taken to be within the range of �50pkp50 in Eq. (6).

For roughness of a single wavelength, zðxÞ ¼ A cosð2px=lÞ, where, A is the amplitude and l the wavelength.
When the wavelength is less than the sleeper spacing and L/l is a rational number, then there exist three
positive integers, k, n and N (noN) such that L/l ¼ k+n/N. This indicates the profile is a periodic function
with the period equal to NL. It can be shown that

zðxÞ ¼ 1
2

Aeikb0x eib0ðn=NÞx þ 1
2

Ae�iðkþ1Þb0x eib0ððN�nÞ=NÞx, (8)

which is a special case of Eq. (6).
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2.3. Interaction forces between wheel and rail

According to Eq. (3b), the compressive wheel/rail force, Pl(t), between the lth wheel and the rail is periodic
of NL/c. Similar to Eq. (6), it may be expressed as

PlðtÞ ¼
XN�1
n¼0

X1
k¼�1

~P
l

nke
ikO0t

 !
eiðn=NÞO0t, (9)

where O0 ¼ ð2pc=LÞ ¼ b0c is the sleeper passing (radian) frequency and ~P
l

nk is the amplitude of the harmonic

component at frequency ðk þ n=NÞO0 of the lth wheel–rail force. Eq. (9) shows that the wheel–rail force
spectrum is discrete with the frequency resolution being O0=ð2pNÞ in Hertz. The component corresponding to

n ¼ k ¼ 0 is the static load, Wl, i.e. ~P
l

00 ¼W l . If the period of the roughness is identical to the sleeper spacing

(i.e. N ¼ 1), then wheel–rail forces have components at the sleeper passing frequency and its multiples only.

2.4. Vertical displacement of wheel

The vertical displacement, directed upwards, at the contact point of the lth wheel due to the lth wheel–rail
force can be calculated using the receptance of the wheel, i.e.

wl
W ðtÞ ¼

XN�1
n¼0

X1
k¼�1

gl
nk
~P

l

nke
ikO0t

 !
eiðn=NÞO0t, (10)

where gl
nk is the direct receptance of the lth wheel at frequency (k+n/N)O0 and can be computed using the

finite element method. In this paper, the wheel is modelled as a rigid-body vibrating in the vertical direction,
therefore

gl
nk ¼

to be defined when k ¼ n ¼ 0;
1

�ml
W
½ðkþn=NÞO0�

2 otherwise;

(
(11)

where ml
W denotes the wheel mass.

2.5. Vertical displacement of rail at wheel/rail contact point

It is well known that (see e.g. [15,23]), under the action of a moving harmonic load and in steady state, the
displacement-to-load ratio (the quasi-receptance) of the rail observed from the load is a periodic function of
time. The period is equal to the sleeper-passing time. A general formulation is presented in Ref. [15] for the
calculation of the Fourier coefficients of this periodic function. According to Ref. [15], the displacement,
directed downwards, at the lth contact point on the rail due to the jth wheel–rail force is given by

w
lj
RðtÞ ¼

XN�1
n¼0

X1
k¼�1

~P
j

nk

X1
m¼�1

rlj
mððk þ n=NÞO0Þe

�imO0t

 !
eikO0t eiðn=NÞO0t, (12)

where the sum in the brackets is the time-varying quasi-receptance at the lth contact point due to a unit

harmonic force of radian frequency ðk þ n=NÞO0 at the jth contact point, rlj
mððk þ n=NÞO0Þ is the (�m)th

Fourier coefficient of the quasi-receptance and ~P
j

nk is the amplitude of the jth wheel–rail force at frequency

ðk þ n=NÞO0 (see Eq. (9)). Eq. (12) can be further manipulated as follows:

w
lj
RðtÞ ¼

XN�1
n¼0

X1
k¼�1

~P
j

nk

X1
m¼�1

rlj
mððk þ n=NÞO0Þe

iðk�mÞO0t

 !
eiðn=NÞO0t

¼
XN�1
n¼0

X1
k¼�1

~P
j

nk

X1
m¼�1

r
lj
k�mððk þ n=NÞO0Þ e

imO0t

 !
eiðn=NÞO0t
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¼
XN�1
n¼0

X1
m¼�1

X1
k¼�1

r
lj
k�mððk þ n=NÞO0Þ ~P

j

nk

 !
eimO0t eiðn=NÞO0t

¼
XN�1
n¼0

X1
k¼�1

X1
m¼�1

r
lj
m�kððmþ n=NÞO0Þ ~P

j

nm

 !
eikO0t eiðn=NÞO0t. ð13Þ

Eq. (13) does show that, the displacements of the wheel/rail contact points are periodic function of time with
the period equal to NL/c.
2.6. Determination of wheel– rail force

It is assumed that the wheels are always in contact with the rail via a linearised Hertz contact spring
calculated at the static component, Wl, of the wheel–rail force. Since the filtered roughness is used, the stiffness
of the contact spring at the lth contact point, kl

H , can be evaluated based on a smooth rail profile [22].
According to Eq. (2), have

wl
W ðtÞ þ

XM
j¼1

w
lj
RðtÞ þ dl

0 þ ðPlðtÞ �W lÞ=kl
H ¼ zðal þ ctÞ; l ¼ 1; 2; . . . ;M, (14)

where dl
0 is the static deformation of the contact spring under the static load, Wl. Note that in Eq. (14), the rail

roughness is directed upwards. Inserting Eqs. (6), (9), (10) and (13) into Eq. (14) yields

XN�1
n¼0

X1
k¼�1

gl
nk
~P

l

nke
ikO0t

 !
eiðn=NÞO0t

þ
XM
j¼1

XN�1
n¼0

X1
k¼�1

X1
m¼�1

r
lj
m�kððmþ n=NÞO0Þ ~P

j

nm

 !
eikO0t eiðn=NÞO0t

 !

þ 1
kl

H

XN�1
n¼0

X1
k¼�1

~P
l

nk e
ikO0t eiðn=NÞO0t �

1

kl
H

W l

¼ �dl
0 þ

XN�1
n¼0

X1
k¼�1

~Znk e
ikb0ðalþctÞ eiðn=NÞb0ðalþctÞ

or

XN�1
n¼0

X1
k¼�1

gl
nk
~P

l

nke
ikO0t

 !
eiðn=NÞO0t

þ
XN�1
n¼0

X1
k¼�1

X1
m¼�1

XM
j¼1

r
lj
m�kððmþ n=NÞO0Þ ~P

j

nm

 !
eikO0t eiðn=NÞO0t

þ
1

kl
H

XN�1
n¼0

X1
k¼�1

~P
l

nk e
ikO0t eiðn=NÞO0t �

1

kl
H

W l

¼ �dl
0 þ

XN�1
n¼0

X1
k¼�1

~Znke
ikb0al eiðn=NÞb0al eikO0t eiðn=NÞO0t, ð15Þ

since O0 ¼ b0c.
For any combination of n and k except for n ¼ k ¼ 0, Eq. (15) gives

gl
nk þ 1=kl

H

� �
~P

l

nk þ
X1

m¼�1

XM
j¼1

r
lj
m�kððmþ n=NÞO0Þ ~P

j

nm ¼
~Znk e

ikb0al eiðn=NÞb0al . (16)
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Especially when n ¼ 0 and k6¼0

gl
0k þ 1=kl

H

� �
~P

l

0k þ
X1

m¼�1
ma0

XM
j¼1

r
lj
m�kðmO0Þ ~P

j

0m ¼
~Z0ke

ikb0al �
XM
j¼1

r
lj
�kð0O0ÞW j, (17)

since ~P
j

00 ¼W j.
For n ¼ k ¼ 0, Eq. (15) gives

gl
00W l þ

X1
m¼�1

XM
j¼1

rlj
mðmO0Þ ~P

j

0m ¼ �d
l
0. (18)

Now unknowns, ~P
l

0k, where l ¼ 1, 2,y,M and k ¼71,72,y, can be determined from Eq. (17). For every
n 6¼0, unknowns ~P

l

nk, where l ¼ 1, 2,y,M and k ¼ 0,71,72,y can be determined using Eq. (16). Eq. (18)
gives the average displacement of the lth wheel

wl
W0 ¼ gl

00W l ¼ �
X1

m¼�1

XM
j¼1

rlj
mðmO0Þ ~P

j

0m � dl
0; l ¼ 1; 2; . . . ;M. (19)

Eqs. (16) and (17) contain an infinite number of unknowns. In actual calculation, only a finite number of
unknowns, ~P

l

nk, where, l ¼ 1, 2,y,M, n ¼ 0, 1,y,N�1 and k ¼ �K,y,K (K is an positive integer. As has
been identified in Section 2.2, K may be chosen to be 50), are determined through the following equations:

gl
0k þ 1=kl

H

� �
~P

l

0k þ
XK

m¼�K
ma0

XM
j¼1

r
lj
m�kðmO0Þ ~P

j

0m

¼ ~Z0k e
ikb0al �

XM
j¼1

r
lj
�kð0O0ÞW j ; ka0, ð20Þ

gl
nk þ 1=kl

H

� �
~P

l

nk þ
XK

m¼�K

XM
j¼1

r
lj
m�kððmþ n=NÞO0Þ ~P

j

nm ¼
~Znk e

ikb0al eiðn=NÞb0al ; na0. (21)

Eq. (20) may be written in a more compact form

½B�0kf
~Pg0k þ

XK

m¼�K
ma0

½C�0kmf
~Pg0m ¼ f

~Zg0k � ½C�0k0fW g; k ¼ �K ; . . . ;K ; ka0, (22)

where the vectors and matrices are defined as follows:

~P
� �

0k
¼ ~P

1

0k; ~P
2

0k; . . . ; ~P
M

0k

� �T
(23a)

is a vector consisting of wheel–rail force components at frequency kO0,

½B�0k ¼

g1
0k þ 1=k1

H � � � 0

..

.
� � � ..

.

0 � � � gM
0k þ 1=kM

H

2
6664

3
7775, (23b)

½C�0km ¼

r11m�kðmO0Þ � � � r1M
m�kðmO0Þ

..

. ..
. ..

.

rM1
m�kðmO0Þ � � � rMM

m�kðmO0Þ

2
6664

3
7775, (23c)
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½C�0k0 ¼

r11m�kð0O0Þ � � � r1M
m�kð0O0Þ

..

. ..
. ..

.

rM1
m�kð0O0Þ � � � rMM

m�kð0O0Þ

2
6664

3
7775, (23d)

f ~Zg0k ¼
~Z0k eikb0a1 ; . . . ; eikb0aM
� �T

, (23e)

fW g ¼ ðW 1; . . . ;W MÞ
T. (23f)

From Eq. (22) unknowns, ~P
l

0k (l ¼ 1, 2,y,M, k ¼ �K,y,K, k6¼0) can be determined.
Similarly, Eq. (21) may be written as

½B�nkf
~Pgnk þ

XK

m¼�K

½C�nkmf
~Pgnm ¼ f

~Zgnk; na0; k ¼ �K ; . . . ;K , (24)

where the vectors and matrices are defined as follows:

~P
� �

nk
¼ ~P

1

nk; ~P
2

nk; . . . ; ~P
M

nk

� �T
, (25a)

½B�nk ¼

g1
nk þ 1=k1

H � � � 0

..

.
� � � ..

.

0 � � � gM
nk þ 1=kM

H

2
6664

3
7775, (25b)

½C�nkm ¼

r11m�kððmþ n=NÞO0Þ � � � r1M
m�kððmþ n=NÞO0Þ

..

. ..
. ..

.

rM1
m�kððmþ n=NÞO0Þ � � � rMM

m�kððmþ n=NÞO0Þ

2
6664

3
7775, (25c)

~Z
� �

nk
¼ ~Znk eikb0a1 eiðn=NÞb0a1 ; . . . ; eikb0aM eiðn=NÞb0aM

� �T
. (25d)

From Eq. (22) unknowns, ~P
l

nk (l ¼ 1, 2,y,M, k ¼ �K,y,K) can be determined for every n, where
n ¼ 1, 2,y,N�1.

2.7. Existence and uniqueness of periodic wheel/rail fore

Eqs. (20) and (21) have been established for the periodic solution of wheel/rail forces with the period being
NL/c. The track structure with the roughness may be thought to have periods of 2NL, 3NL etc and periodic
solutions with periods 2NL/c, 3NL/c etc may also be possible. It is now assumed that there exits a periodic
solution with the period being mNL/c, where m41 is an integer. In other words, the lth wheel/rail force can be
expressed as

PlðtÞ ¼
XmN�1

n¼0

X1
k¼�1

~P
l

nke
ikO0t

 !
eiðn=mNÞO0t. (26)

Following the same procedure detailed in Sections 2.2–2.6, it can be shown that the harmonic component

amplitude, ~P
l

nk, at frequency ðk þ n=mNÞO0 is governed by

gl
0k þ 1=kl

H

� �
~P

l

0k þ
XK

m¼�K
ma0

XM
j¼1

r
lj
m�kðmO0Þ ~P

j

0m
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¼ ~Z0ke
ikb0al �

XM
j¼1

r
lj
�kð0O0ÞW j ; k ¼ �K ; . . . ;�1; 1; . . . ;K ð27Þ

and

gl
nk þ 1=kl

H

� �
~P

l

nk þ
XK

m¼�K

XM
j¼1

r
lj
m�kððmþ n=mNÞO0Þ ~P

j

nm ¼
~Znke

ikb0al eiðn=mNÞb0al ,

k ¼ �K ; . . . ;�1; 0; 1; . . . ;K , ð28Þ

where n ¼ 1, 2,y, mN�1, therefore n/mNo1. Note that, gl
nk is the direct receptance of the lth wheel at

frequency ðk þ n=mNÞO0 and ~Znk is the amplitude of the roughness at wavenumber ðk þ n=mNÞb0. Since the
period of the roughness is NL, and according to Eq. (6), it must have

~Znk ¼ 0 when na0;m; 2m; . . . ; mðN � 1Þ. (29)

Thus, when nam; 2m; . . . ;mðN � 1Þ, Eq. (28) becomes

gl
nk þ 1=kl

H

� �
~P

l

nk þ
XK

m¼�K

XM
j¼1

r
lj
m�kððmþ n=mNÞO0Þ ~P

j

nm ¼ 0; k ¼ �K ; . . . ;�1; 0; 1; . . . ;K . (30)

If coefficient matrix of Eq. (27) is regular and it is also true for the coefficient matrix of Eq. (28) with every n,

where n ¼ 1, 2,y, mN�1, then a unique solution for ~P
j

nk exists and can be worked out from these equations.

Especially from Eq. (30),

~P
j

nk ¼ 0, (31)

where j ¼ 1, 2,y,M, n 6¼0, m, 2m,y, m(N�1) and k ¼ �K,y,�1, 0, 1 ,y,K. This combined with Eq. (26)
shows that the wheel/rail forces are periodic with the period being NL/c, rather than mNL/c.

Now it can be concluded that, if for any real number s, 0pso1, the coefficient matrix of the following
equations (unknowns are denoted by X l

k),

gl
k þ 1=kl

H

� �
X l

k þ
XK

m¼�K

XM
j¼1

r
lj
m�kððmþ sÞO0ÞX

j
m ¼ 0, (32)

where l ¼ 1, 2,y,M, k ¼ �K,y,�1, 0, 1y,K and gl
k is the direct receptance of the lth wheel at frequency

(k+s)O0, is regular, then (a) there exists a unique periodic solution for the wheel/rail forces with the smallest
period being NL/c; (b) periodic solutions cannot exist to have the smallest period of 2NL/c, 3NL/c, etc.

The above condition can be easily verified and is found to hold for all the cases studied in Section 4.

3. Moving axle load excitation and equivalent roughness

Eq. (20) shows that at each (e.g. the lth) wheel there are two excitation mechanisms, the roughness
excitation defined by ~Z0ke

ikb0al and the moving axle load excitation given by �
PM

j¼1r
lj
�kð0O0ÞW j . The latter

depends on the wheel speed, the static loads and the track dynamics. It is the position-varying displacement of
the rail at a wheel under the action of the moving static load that causes such an excitation, which in turn
excites the wheel/track system into vibration. The greater the static (axle load), the stronger is the moving axle
load excitation. If the rail is continuously supported, then the moving axle loads will not generate dynamic
wheel/rail forces. In this situation, vibration is expected only for the track structure, not for the wheels. It is
seen that Eq. (21) contains roughness excitation only.

According to Eq. (20), the kth component of an equivalent roughness at the lth wheel may be defined as

~Z
l

0k ¼ �e
�ikb0al

XM
j¼1

r
lj
�kð0O0ÞW j ; k ¼ �K ; . . . ;K ; ka0, (33a)
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~Z
l

00 ¼ 0 (33b)

and this equivalent roughness can be constructed by summing all its components (see Eq. (6))

zlðxÞ ¼
XK

k¼�K

~Z
l

0k e
ikb0x ¼ �

XK

k¼�K

XM
j¼1

r
lj
�kð0O0ÞW j

 !
eikb0ðx�al Þ. (34)

It is seen from Eq. (34) that the equivalent roughness is a periodic function of x with the period equal to the
sleeper spacing, L, and at different wheels the equivalent roughness may be different not only in phase but also
in magnitude. The equivalent roughness is contributed not only by the static load of the ‘home’ wheel, but also
by those of other wheels. The equivalent roughness may be input into a ‘moving roughness model’ so that
predictions from such a model can be improved.

4. Results

In this section, results are produced using the approach derived above for a single locomotive wheel and for
four such wheels moving over a conventional ballasted track with UIC60 rails (Fig. 1). Each wheel is modelled
as a rigid body having mass 1350 kg and radius 0.575m. The static load applied by a wheel is evaluated to be
100 kN, half the axle load of the locomotive. The stiffness of the wheel–rail contact spring is calculated to be
1.4� 109N/m. A set of typical parameters for the track structure is listed in Table 1. These parameters are for
half the structure (i.e. a single rail on half-sleepers) and correspond to a track with concrete monobloc sleepers
and moderately stiff rail pads. Results include roughness levels equivalent to the moving axle load excitation,
wheel–rail force spectra and wheel–rail force ‘position-histories’ (i.e. time history plotted against spatial
coordinates). The wheel–rail force spectra are discrete; however, they are plotted as if they were continuous.

4.1. Roughness equivalent to moving axle load excitation

Components of roughness equivalent to the moving axle load excitation are calculated according to
Eq. (33), and shown in levels in Fig. 2 for a single wheel moving at 20, 40 and 80m/s along the track. Note that
the equivalent roughness displays discrete wavelengths equal to the sleeper spacing, half the spacing, one-
third, etc. At wavelengths of 0.3 and 0.6m, roughness levels are greater than 0 dB and even can be as high as
more than 10 dB, comparable to some actual roughness present on main railway lines. This demonstrates the
importance of including the moving axle load excitation in wheel–rail interaction problems. For wavelengths
less than one-third (0.2m) of the sleeper spacing, roughness levels follow a linear relationship with
wavelengths. The levels for the first two speeds are indistinguishable and for the highest speed the roughness
level is increased by about 3 dB only at wavelength 0.3m, half the sleeper spacing. This is because the
combination of the wavelength and speed gives a frequency (266Hz) near, which the track has a dip
Table 1

Parameters for the vertical dynamics of a track

Density of the rail r ¼ 7850 kg/m3

Young’s modulus of the rail E ¼ 2.1� 1011N/m2

Shear modulus of the rail G ¼ 0.81� 1011N/m2

Loss factor of the rail ZR ¼ 0.01

Cross-sectional area of the rail A ¼ 7.69� 10�3m2

Second moment of area of the rail cross-section I ¼ 30.55� 10m4

Shear coefficient of the rail cross-section k ¼ 0.4

Vertical rail pad stiffness kP ¼ 3.5� 108N/m

Rail pad loss factor ZP ¼ 0.25

Mass of sleeper mS ¼ 162 kg

Sleeper spacing l ¼ 0.6m

Vertical ballast stiffness kB ¼ 50� 106N/m

Loss factor of ballast ZB ¼ 1.0
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receptance (a peak stiffness) (B in Fig. 3). Nevertheless, for wheel–rail noise problem at current operational
train speeds, the equivalent roughness may be approximated to be independent of train speed.

The equivalent roughness levels may be used as a lower limit for roughness management. In other words, it
is meaningless to require rail roughness to be lower than the equivalent roughness.

4.2. Wheel– rail force: a single wheel moving along the rail

4.2.1. Rail with a smooth railhead

In this sub-section, wheel–rail force is produced for a single wheel moving along the rail with a smooth
railhead. The results are shown in Figs. 4 (spectrum) and 5 (time-history). For a smooth railhead, only Eq. (22)
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needs to be solved. It is seen from Fig. 4 that the wheel–rail force spectrum shows a broad peak around the
first pinned–pinned frequency (D in Fig. 3, about 1070Hz), although at this frequency the rail can present a
dip or peak receptance depending on the location on the rail. The magnitude of this peak, however, is much
less than the component at the sleeper-passing frequency (67Hz at 40m/s), even at very high speeds. A dip is
observed at about 500Hz which is caused by the low stiffness (high receptance) of the rail (C in Fig. 3). All
the dynamic wheel–rail force components increase as the wheel speed increases. Table 2 shows the ratios of
the first three components of the dynamic wheel–rail force to the static load. At speeds below 40m/s, the
component at the sleeper-passing frequency is dominant. However, for higher wheel speeds, the second
component at twice the sleeper-passing frequency can be as strong as the first one. This is because
the frequency of the second component is within the frequency range (200–300Hz) within which the
rail receptance is minimum (B in Fig. 3). As has identified in Section 2, the wheel–rail force is a
spatially periodic function with the period equal to the sleeper spacing. Fig. 5 shows the wheel–rail force
variation within a sleeper bay. It can be seen that the maximum wheel–rail force does not necessarily occurs
at a sleeper.

4.2.2. Rail with a spatially harmonic railhead

In this case, the roughness is set to be of a single wavelength and the amplitude is chosen to be 10 mm (17 dB
re 1 mm), i.e. z(x) ¼ 1� 10�5 cos (2p/l)x ¼ 1� 10�5 cos (2pf/c)x (m), where x ¼ 0 is chosen to be at a sleeper, f

denotes the roughness excitation frequency, c denotes the wheel speed and l the wavelength. Using Eq. (8), the
roughness is transformed to the required form (see Table 3). If the wavelength is a fraction of the sleeper
spacing, then N ¼ 1 in Eq. (3) and only Eq. (22) needs to be solved. Since the roughness level is much higher
than the roughness level equivalent to the moving axle load excitation (see Fig. 2), contributions to the
wheel–rail force from the moving axle load excitation are negligible.

For roughness excitation frequencies of 500, 1000 and 2000Hz, the spectra of the wheel–rail force are shown
in Figs. 6–8. It can be seen that, in addition to the peaks at 0Hz (static load) and the first pinned–pinned
frequency, the wheel–rail force spectra have a peak at the roughness excitation frequency. This peak becomes
broad when the excitation frequency is near the first pinned–pinned frequency. The magnitude of the
component at the roughness excitation frequency is almost independent of the wheel speed, although
the magnitudes of other harmonic components increase with the wheel speed. For a thorough understanding,
the component at the excitation frequency is calculated for a range of roughness excitation frequencies, as
shown in Fig. 9.
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Table 2

Ratios of the first three components of the wheel–rail force to the static load

Wheel speed (m/s) First component (%) Second component (%) Third component (%)

20 1.4 0.4 0.0

40 2.0 0.6 0.4

60 2.0 2.1 0.4

80 3.4 2.3 0.4

Table 3

Wavelengths (m) and k, N and n in Eq. (8) of roughness at different excitation frequencies and wheel speeds

Excitation frequencies (Hz) Wheel speed (20m/s) Wheel speed (40m/s) Wheel speed (80m/s)

500 0.04 (k ¼ 15, N ¼ 1, n ¼ 0) 0.08 (k ¼ 7, N ¼ 2, n ¼ 1) 0.16 (k ¼ 3, N ¼ 4, n ¼ 3)

1000 0.02 (k ¼ 30, N ¼ 1, n ¼ 0) 0.04 (k ¼ 15, N ¼ 1, n ¼ 0) 0.08 (k ¼ 7, N ¼ 2, n ¼ 1)

2000 –– 0.02 (k ¼ 30, N ¼ 1, n ¼ 0) 0.04 (k ¼ 15, N ¼ 1, n ¼ 0)
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Fig. 9 shows that, at frequencies below the first pinned–pinned frequency, there is a correspondence between
the peaks (dips) in this figure and the dips (peaks) in the receptance of the rail shown in Fig. 3. In other words,
high stiffness of the rail leads to a high dynamic wheel–rail force component at the excitation frequency. The
effect of the wheel speed is negligible except for frequencies within the ranges of 1000–1300 and 2500–3000Hz.
A strong influence of the wheel speed is seen in these two frequency ranges, particularly in the second one.
These two frequency ranges correspond to the first (D in Fig. 3) and second (F in Fig. 3) pinned–pinned
frequencies. These features distinguish the present approach from the moving roughness approach. If the
moving roughness approach is employed, the dynamic wheel–rail force is just a pure harmonic at the
roughness excitation frequency and it presents a peak at the first pinned–pinned frequency if the wheel is
above a sleeper and a dip if the wheel is at the mid-span; and for frequencies higher than 2500Hz, the
magnitude of the wheel–rail force must be close to a constant, since for these frequencies the receptance of the
contact spring is much higher than those of the track and the wheel.
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Fig. 6. Wheel–rail force spectrum for the wheel moving at 20m/s (________), 40m/s (– – –) and 80m/s (. . . . . .) over the rail with a sinusoidal

railhead of amplitude 10mm at a wavelength corresponding to 500Hz.
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Fig. 7. Wheel–rail force spectrum for the wheel moving at 20m/s (________), 40m/s (– – –) and 80m/s (. . . . . .) over the rail with a sinusoidal

railhead of amplitude 10mm at a wavelength corresponding to 1000Hz.
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The dynamic wheel–rail force position-history induced by the irregular rail profile only (the component due
to the moving axle load excitation is subtracted from the total wheel–rail force) is shown in Fig. 10 for
excitation frequency 1 kHz and Fig. 11 for 2 kHz. The histories are plotted for the same sleeper bay and the
excitation frequency is fixed, so the roughness wavelength increases as the wheel speed increases. Fig. 10 shows
that, since the excitation frequency is close to the first pinned–pinned frequency, the wheel–rail force history
exhibits a complex pattern. As shown in Fig. 7, harmonic components of similar magnitudes exist around the
excitation frequency and these harmonic components modulate each other, generating a complex resultant
wheel–rail force history. A strong effect of the wheel speed is clearly revealed: the maximum wheel–rail force is
shifted by the wheel speed from the sleeper towards the mid-span. However, since excitation frequency at
2 kHz is significantly different from the first and the second pinned–pinned frequencies, the dynamic
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Fig. 8. Wheel–rail force spectrum for the wheel moving at 40m/s (– – –) and 80m/s (. . . . . .) over the rail with a sinusoidal railhead of

amplitude 10 mm at a wavelength corresponding to 2000Hz.
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Fig. 9. The component of the wheel–rail force at the excitation frequency for the wheel moving at 40m/s (– – –) and 80m/s (. . . . . .) over

the rail with a sinusoidal railhead of amplitude 10mm.
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wheel–rail force due to the rail irregularity is basically harmonic, following the pattern of the irregularity. This
is confirmed by the wheel–rail force spectra shown in Fig. 8 in which a narrow and sharp peak occurs at the
excitation frequency. The wheel speed does not have a significant effect at this frequency.

4.3. Wheel– rail force: four wheels moving along rail

Now discussion is turned to the case in which there are four wheels from the locomotive’s two bogies
moving along the rail, to investigate interactions between multiple wheels. The bogie wheelbase is 3.3m long
and the distance between the bogie centres is 10m. In other words, the initial position of the four wheels are
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Fig. 10. Wheel–rail force position-history for the wheel moving at 20m/s (________), 40m/s (– – –) and 80m/s (. . . . . .) over the rail with a

sinusoidal railhead of amplitude 10 mm at a wavelength corresponding to 1000Hz.
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Fig. 11. Wheel–rail force position-history for the wheel moving at 40m/s (– – –) and 80m/s (. . . . . .) over the rail with a sinusoidal railhead

of amplitude 10 mm at a wavelength corresponding to 2000Hz.
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a1 ¼ 0m, a2 ¼ �3.3m, a3 ¼ �10m and a4 ¼ �13.3m (see Eq. (14) and Fig. 1). The bogie wheelbase covers
five and a half-sleeper bays.

As a wheel moves over a sleeper bay, dynamic stiffness provided by the rail to the wheel varies, due not only
to the discrete rail supports, but also to the moving of other wheels. A moving static load produces to the rail
mainly a moving deformation, which is not symmetric about the load: deformation behind the load is greater
and extends to a larger distance than that ahead the load. This is particularly the case when the load speed is
high. If the frequency is within the pass-band [11], a dynamic wheel–rail force generates rail vibration
propagations ahead and behind the wheel, and the vibration wave behind the wheel is larger in both
magnitude and wavelength than that ahead the wheel. Thus interactions between two adjacent moving wheels
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Fig. 12. Wheel–rail force position-history for the wheels moving at 40m/s over the rail with a smooth railhead. ________, at the first wheel;
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are not symmetric: the effect received by the rear wheel from the front wheel is stronger than that received by
the front wheel from the rear one.

4.3.1. Rail with a smooth railhead

For the rail with a smooth railhead, wheel–rail force position-histories of the four wheels are shown in
Fig. 12 for the wheels moving at 40m/s. They are wheel/rail forces for the wheels passing the same sleeper bay,
termed the observation bay. Since the bogie wheelbase is relatively short, the wheel–rail forces within a bogie
are indistinguishable. However, differences are clearly present between the two bogies due to the interactions
between the wheels. Compared with Fig. 5 for a single wheel, the wheel–rail forces of the first bogie are almost
identical to that of the single wheel. This indicates that the effects of the last two wheels on the first two
wheel–rail forces are negligible.

4.3.2. Rail with a spatially harmonic railhead

Wheel–rail forces are also produced for the four wheels moving at 40m/s over the rail with a spatially
harmonic railhead of a single wavelength. The wheel–rail force component at the excitation frequency (note:
roughness excitation frequencies have been chosen to equal the sleeper passing frequency and its multiples) is
shown in Figs. 13–16 for the four wheels. At frequencies below 600Hz, this component presents a small
difference from that in the single wheel case shown in Fig. 8. In other words, for those frequencies, interacting
effects on that wheel–rail force component (magnitude) are negligible. In fact, Fig. 2 of Ref. [11] shows that
230 to 520Hz is a stop band. However, at higher frequencies, many strong peaks which are not found in Fig. 8
appear, showing strong interactions between the four wheels.

5. Conclusion

The Fourier-series approach is adopted and improved in this paper for calculating wheel–rail interactions
generated by any number of wheels moving along a railway track which is represented by an infinitely long
periodic structure. This approach assumes railhead roughness to be periodic in the track direction and the
period is equal to the length of a number, N, of sleeper bays. By assuming linear dynamics for the wheel/track
system and in the steady state, each wheel/rail force generated from roughness excitation as well as from the
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Fig. 13. Wheel–rail force component at the excitation frequency of the first wheel moving at 40m/s over the rail with a sinusoidal railhead

of amplitude 10 mm.
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Fig. 14. Wheel–rail force component at the excitation frequency of the second wheel moving at 40m/s over the rail with a sinusoidal

railhead of amplitude 10mm.
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moving axle load excitation is shown to be a periodic function of time with the period being NL/c, where L

is the sleeper spacing and c the wheel speed. With a special mathematical treatment, Fourier coefficients of
the wheel/rail forces are shown to be determined by solving N uncoupled sets of linear algebraic equations.
The coefficient matrix of each set of equations is independent of rail roughness and therefore this approach,
combined with contact mechanics and wear process, is particularly useful in modelling the generation and
growth of rail corrugation and roughness. By assuming a smooth railhead, the response of the wheel/
track system to the moving axle load excitation is realised. Roughness equivalent to the moving axle load
excitation is also defined. This equivalent roughness may, in addition to the actual rail roughness, be fed into
a ‘moving roughness’ model in which the moving axle load excitation has not been taken into account,
so that predictions from such a model can be improved. This equivalent roughness also provides a lower
limit for rail roughness management. Conditions are also derived to ensure the existence and unique-
ness of the above NL/c-periodic wheel/rail forces and at the same time forbid the existence of 2NL/c,
3NL/c, y-periodic wheel/rail forces.
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Fig. 16. Wheel–rail force component at the excitation frequency of the fourth wheel moving at 40m/s (– – –) over the rail with a sinusoidal

railhead of amplitude 10 mm.
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Fig. 15. Wheel–rail force component at the excitation frequency of the third wheel moving at 40m/s over the rail with a sinusoidal

railhead of amplitude 10 mm.
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Based on calculations using time-domain models, this periodic solution is believed to be asymptotically
stable under conventional conditions, although a rigorous proof is desirable.

Results are produced for a single locomotive wheel and for four such wheels running at different speeds over
a conventional ballasted track with either a smooth railhead or a rough railhead of different wavelengths. It is
demonstrated that, for the purpose of rolling noise prediction, roughness levels equivalent to the moving
axle load excitation can be approximated to be independent of wheel speed. Opposite to that, all the dynamic
wheel–rail force components due to the moving axle excitation increase with the wheel speed. Dynamic
wheel–rail forces due to the moving axle load excitation consist of harmonic components at the sleeper-passing
frequency and its multiples. The component at the sleeper passing frequency is dominant if the wheel speed
is low. However, at high wheel speeds, the second component at twice the sleeper-passing frequency can be
as strong as the first. A broad peak is present in the wheel–rail force spectrum at the first pinned–
pinned frequency.
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When the roughness excitation is much higher than the moving axle load excitation and the excitation
frequency is significantly different from the first and second pinned–pinned frequencies of the track, the wheel
speed has an insignificant effect on the wheel–rail force component at that frequency, and even on the total
wheel–rail force. The wheel–rail force position-history exhibits a harmonic wave pattern. However, around the
pinned–pinned frequencies, the role of the wheel speed cannot be neglected, even for roughness excitation
alone. The wheel–rail force position-history displays a complex waveform due to modulations of components
of similar magnitudes and frequencies.

Strong interactions between multiple wheels are demonstrated at frequencies above 600Hz for the chosen
track and bogies.
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